GCE Physics - PH2

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question 1} \& Marking details \& Marks Available \\
\hline \multirow[t]{7}{*}{1.} \& \multirow[t]{7}{*}{(a)

(b)
(c)} \& (i) \& 0.40 [m] \& [1] \\
\hline \& \& (ii) \& 0.20 [s] \& [1] \\
\hline \& \& (iii) \& $f=5.0[\mathrm{~Hz}](1)$ or $v=\frac{\lambda}{T}$ or by implication $\nu=2.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)$ ecf on T and λ \& [2] \\
\hline \& \& \& F and J \& [1] \\
\hline \& \& (i) \& Direction of oscillations or trolley motion (accept particle vibration or wave oscillations) and direction of [wave] travel (1) are at right angles. (1) \& [2] \\
\hline \& \& (ii) \& \& [1] \\
\hline \& \& \& Question 1 total \& [8] \\
\hline
\end{tabular}

Question 2				Marking details	Marks Available
2.	(a)			Use of $v=\frac{d}{t}$ even if factor of 2 is omitted, or powers of 10 adrift (but not both these faults). (1) $v=340 \pm 10 \mathrm{~ms}^{-1} \text { UNIT }$ Answer must be seen to be derived. No marks for gradient attempt.	[2]
		(i)	I	$\begin{aligned} & \lambda=\frac{0.30 \times 0.16}{1.2}[\mathrm{~m}] \text { (1) or by implication } \\ & \lambda=0.040[\mathrm{~m}] \text { (1) }[0.080 \mathrm{~m} \text {, arising from } y=0.32 \mathrm{~m} \text {, loses } 1 \\ & \text { mark] } \end{aligned}$	[2]
			II	$v=332\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ ecf	[1]
		(ii)	I	Dot nearest A should be marked ' M '.	[1]
				Waves [from S_{1} and S_{2}] arrive in phase at M Accept constructive interference and whole number of wavelengths path difference.	[1]
		(iii)		$\lambda=1.1[\mathrm{~m}]$ or $\lambda>a$ or $\lambda>0.3[\mathrm{~m}]$ or $\lambda>\mathrm{S}_{1} \mathrm{~S}_{2}(1)$ Maximum path difference possible [for waves from S_{1} and S_{2}] is [the slit separation, which is only] 0.30 m or path difference can never be large enough (1) Or [Young's fringes equation gives] 'first' maximum at 4.4 m from central dot. Accept fringes too far apart.	[2]
				Question 2 total	[9]

Question 4			Marking details	Marks Available
4.	(a)		Interference between or superposition of or sum of two [progressive] waves [of equal amplitude and frequency] Travelling in opposite directions or reflect (1)	[2]
	(b)	(i) I II		[2]
		(ii)	$\begin{align*} & \lambda=0.75[\mathrm{~m}] \quad \text { (1) or by implication } \\ & f=\underline{128 \mathrm{~Hz} \text { UNIT }} \quad \text { (1) } \tag{1} \end{align*}$	[2]
	(c)	(i)		[1]
		(ii)	$\lambda=3.00[\mathrm{~m}]$ or by implication ecf provided λ consistent with diagram (1) $f=32[\mathrm{~Hz}]$ (1) ecf	[2]
	(d)		$32 n[\mathrm{~Hz}]$ or equivalent	[1]
			Question 4 Total	[10]

Question 5			Marking details	Marks Available
5.	(a)	(i)	ϕ is [minimum] energy needed to release an electron from surface [or from metal or from material]. (1) No marks for giving meaning of f_{0}. So [minimum] photon energy needed is ϕ. (1) So $h f_{0}=\phi$ or $E_{\text {photon }}=h f(1)$	[3]
		(ii)	Award $2 \times(1)$ of: - More photons per second - Individual photon energies unchanged - $E_{k \max }$ depends on energy of individual photon or $E_{k \max }=h f-\phi$ does not include intensity. Accept: Photons don't co-operate [in releasing electrons].	[2]
	(b)		Increase / adjust pd until nano-ammeter shows zero current [or equiv.] (1) Read voltmeter (1) or by implication $E_{k \max }=e V$	[3]
	(c)	(i)	Gradient $=6.7[\pm 0.2] \times 10^{-34}[\mathrm{~J} \mathrm{~s}](1)$ Mention of Planck's constant and sensible comparison (1)	[2]
		(ii)	$\phi=4.1[\pm 0.2] \times 10^{-19}[\mathrm{~J}]$ barium but only award mark if some reasoning given e.g. correct reference to intercept (1)	[2]
			Question 5 Total	[12]

Question 6			Marking details	Marks Available
6.	(a)	(i)	$\Delta E=1.87 \times 10^{-19}[\mathrm{~J}] \quad(1)$ $\lambda=\frac{h c}{\Delta E}$ (1) or equivalent, including $\lambda=\frac{c}{f}$ and $f=\frac{c}{\lambda}$. $\lambda=1.06 \times 10^{-6} \mathrm{~m}$ (1) ecf on arithmetical slip in ΔE.	[3]
		(ii)	$\lambda=7.9 \times 10^{-7}[\mathrm{~m}]$	[1]
	(b)	(i)	More electrons [accept atoms, ions] in \underline{U} than in L	[1]
		(ii)	PI ensures stimulated emission (1) more likely [frequent] than absorption [for photons of energy $1.87 \times 10^{-19} \mathrm{~J}$] (1) Stimulated emission needed for light amplification because in each stimulated emission event 2 photons out for 1 in or implied by "in phase". (1)	[3]
		(iii)	Electrons drop from L [to ground state] leaving L depopulated. (1) Making it easier to have more electrons in U than L or making a PI easier to establish or needing less pumping. (1)	[2]
			Question 6 Total	[10]

Question 8			Marking details	Marks Available
8.	(a)(b)	(i)	They interact by the weak interaction. (1) Interactions [very] infrequent compared with strong or e-m. [or other correct and relevant comment e.g. no charge]	[2]
		(i)	Combination of 3 quarks	[1]
		(ii)	Lepton no: $1+0=0+0+1$ (1) or equivalent Charge: $0+e=e+e+(-e)$ (1) or equiv. e.g. $0+1=1+1-1$	[2]
		(iii)	For the $1^{\text {st }}$ mark either of these (u or d): $\begin{array}{llll} - & \text { u: }[0+] 1+2 \rightarrow 2+2[+0] & \text { or } & 3 \rightarrow 4 \\ - & \text { d: }:[0+] 2+1 \rightarrow 1+1[+0] & \text { or } & 3 \rightarrow 2 \end{array}$ For the $2^{\text {nd }}$ mark: the other (i.e. u or d) and remark that a d has changed to a u OR equivalent N.B. uud + udd \rightarrow uud + uud is an alternative for the $1^{\text {st }}$ mark.	[2]
		(iv)	Lepton number not conserved.	[1]
			Question 8 Total	[8]

